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O N  T H E  P R O P A G A T I O N  O F  F L E X U R A L  G R A V I T A T I O N A L  W A V E S  

A. E. Buka tov  and D. D. Zav'yalov UDC 532.596 

An analysis of the influence of a crack in a floating elastic plate on the propagation of flexural 
gravitational surface waves in a basin of finite depth has been performed. The dependences of the distribution 
of reflection and transmission amplitude coefficients over the oscillation period on the plate characteristics, 
on the longitudinal compressive force, and on the basin depth have been studied, taking into account the 
contribution of near-edge modes to the formation of wave perturbations. The surging of waves toward the 
edge of an ice plate has been considered in [1-3]. Contact conditions at the crack and their applications to 
the solution of the problem of the wave reflection in deep water are thesubjec ts  of [4]. 

1. Assume that  two half-infinite elastic plates, modeling, in particular, an ice cover with a crack, float 
on the surface of a basin with a constant finite depth H. We consider the influence of the crack on flexural 
gravitational surface waves propagating normally to the crack. The liquid motion is assumed to be potential. 
The origin of coordinates with the z axis pointed upward is placed at the basin bottom. The regions of 
water covered by plates with thicknesses hi and h2 are situated to the left (x < 0) and to the right (x > 0) 
of the vertical axis, respectively. The potentials of liquid motion velocity in these regions are denoted by 
(I)l(X, z, t) = ~o1(z, z)e i~t and (I)2(x, z, t) = ~2(z, z)e i~t (w is the given frequency of the wave incident from the 
region x < 0). 

We consider the dependences of the distributions of disturbance reflection and transmission amplitude 
coefficients over the incident wave period on the basin depth, plate characteristics, and compressive force. In 
the chosen frame, this problem reduces to solving the Laplace equations 

A~I = 0 

with boundary conditions at the basin surface (z = H) 

O5~oj 03~o1 
dj ozOx4 - qi o-~x2 + (1 - aejw2) O~iOz 

and at the bo t tom (z = 0) 

(I.I) 

where 

a) 2 

v i  = o (1.2) 
g 

0~i  -- 0, (1.3) 
Oz 

Ejh3 I ' 1 '  - ~  < x < O, . PJhi. ql__L~; j = 
d i =  1 2 p g ( 1 - u 2 )  ' aei = pg , qi = pg , 2, O < x < -{-oo; 

Ei ,  hi, Pi, u1 are the normal elasticity coefficient, thickness, density, and Poisson's ratio of the plate; qli is the 
compressive force; p is the water density. In addition, the potentials and velocities of horizontal wave flows 
should satisfy the continuity conditions at the contact boundary 

0~01 0~02 
= O < z < H ,  z = O ,  (1.4) r = CP2, Oz Ox ' 
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and the free-edge conditions which are the equality to zero of the flexural moment and shearing force at the 
plate's edges [4]: 

03~~ - 04~j = o. (1.5) 
OzOz 2 OzOz 3 

Applying the variable separation method to Eqs. (1.1)-(1.3), we get the dispersion relations 

w2 = ( d j r 4 - q j r  2 + 1 ) r jg tanh( r jH)  
1 + ~j  r jg  tanh ( r i g )  ' (1.6) 

which connect the phase characteristics of wave disturbances in the regions x < 0 and x > 0, respectively. 
Equation (1.6) has four real roots :l=rj, four pairs of complex conjugate roots flj :k iaj and - f l j  -4- iaj, and 
countable sets of pure imaginary roots :kirjn (n = 1, 2, 3, . . . ) .  Taking into account the boundedness of the 
potentials ~1 at x ~ c~, r at x --~ - c ~ ,  and the absence of an undamped wave surging toward the crack 
from the region x > 0, we write 

~Pl = Ie-i~lZcosh(rlz) + R, eirlXcosh(rlz) + Rle +(al+iza)x COS[(al -[- ifll)Z] 

o o  

+R2e +(a1-i~1)~ cos[(~l - i~a)z] + ~ A ,e  ~1"~ cos(rl ,z);  
n = l  

(1.7) 

qo2 = T.e-ir2~cosh(r2z) + Tie -(~2+iz2)~ cos[(~2 + i/32)z] 

o o  

+ r2e cos[( 2 - i f2);]  + B . e  cos(r2.;) .  (1.8) 
n = l  

All the amplitude coefficients of the potentials ~1, ~o2 are complex. I, R., T. represent incident, reflected, and 
transmitted undamped progressive waves characterized by the roots - r l ,  r l ,  and - r2  of related dispersion 
equations. The coefficients R12 and T1,2 correspond to damped progressive waves due to the flexural stiffness 
of the plate. They are determined by the roots +fix - i~1 and 4-/32 + i~2 of Eqs. (1.6). The near-edge modes 
[2, 3], which exist'on each side of the crack and decrease exponentially away from the crack are represented 
by the roots r j ,  of Eqs. (1.6) and by the coefficients An, Bn in the regions x < 0 and x > 0, respectively. 

2. We shall consider the matching problem for potentials and their derivatives as variational. Therefore, 
finding the velocity potentials reduces to minimization of the error functional for matching with conditions 
(1.4), (1.5). To pass on to a search for the absolute extremum, we write the error functional [3] as 

[ + , (2.1) 

where 5, #, and 7 are unknown Lagrange multipliers. After substituting (1.7), (1.8) into (2.1) and evaluating 
the integrals, the error functional takes the matrix form 

e = et(~Qp + #Qd + 7Q~) e. (2.2) 

Here c is the column-vector of the real and imaginary parts of unknown coefficients; the matrices Qp, Qd, 
and Qe characterize the matching discrepancies of potentials, of their derivatives, and those of fulfillment of 
the free-edge condition at the edges on each side of the crack, respectively; the index t means transposition. 

We put the amplitude of the incident wave potential to be equal to unity, thus excluding a trivial 
solution of the  proble m . This conjecture is equivalent to solving the matrix equation 

c tKc - 2vtc + vtv = 0, (2.3) 

where the elements of the vector v are arranged so that unity corresponds to the amplitude I and zeros to 
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the other coefficients; K is the square matrix defined via 

Kc  = v. (2.4) 

Equation (2.3) is an additional condition to (2.2), and hence we write finally the error functional as 

ct(6Qp 4- pQd + ~/Qe + ,/K)c - 2~vte (2.5) 

(7/ is the additional Lagrange multiplier). Minimization of functional (2.5) is equivalent [5] to solving the 
matrix equation 

(~Qp +/~q~t + ~/qe + T/K)c = ~/v. (2.6) 

Since Q = (6Qp + PQd + 7Qe + T/K) is the ill-conditioned sparse matrix, direct methods for solving linear 
equation systems, as applied to (2.6), may lead to excessive computational efforts [6] and are inadequate 
in this case. It is more reasonable to use iterative methods, e.g., the adjoint gradient method. An iterative 
process may be represented in the form [7] 

c (i+D = Ge (0 + F ,  i = 0,1,2,3, . . . .  

Here, the real transition matrix G for the nonsingular split matrix S has the structure G = E - S-1Q (E is 
the unit matrix and F = S-iT/v). Although Q is a symmetric positive-definite matrix and the adjoint gradient 
method in exact arithmetic should converge to a true solution of Eq. (2.4) in a finite number of iterations, 
round-off errors violate this property. The following inequality [6] allows us to estimate the convergency speed: 

lie (i) - c[[2 ~< 2 V/-~M (1) [[c (~ - c[[2, 

where cr = IIQII2" IlQ-XII2 is the spectral condition number of the matrix Q; M = (v  ~ -  1 ) / ( v ~ +  1). We 
note that the greater a (the worse the conditionality of Q), the stronger the convergency speed slows down. 
Therefore, the adjoint gradient method is always used with a certain kind of preconditioning. The procedure 
is reduced to the construction of the new linear system 

W ( E  - G)c = W F  (2.7) 

(W is the symmetrization matrix), which has the same solution as the original one (2.6), and the coefficient 
matrix W of the new system is symmetric and positive-definite and possesses, generally, a lesser spectral 
condition number compared with the coefficient matrix Q of the original system. However, minimization of 
the value a is not the only aim of the preconditioning. It is necessary to use a wider property spectrum of the 
matrix W ( E  - G ) W  -1 [6]. Furthermore, if the conditionality of the coefficient matrix of the preconditioned 
system is cr = 1, then the preconditioned linear equation system (2.7) is equivalent to the original one (2.6). 

A diagonal matrix with elements Qp(k, k), k = 1, 2 , . . .  ,n, has been chosen as the symmetrization 
matrix W,  and S = W * W  is the split matrix. The Lagrange multipliers g, p, % ~/ for the convergence 
optimization were chosen as in [3]. The number n of near-edge damped modes summed in numerical 
computations was taken so as to satisfy the required accuracy from the balance of energy flux densities 
through a closed surface bounding a given liquid volume. The volume is limited by part of the basin surface, a 
region of the impenetrable bottom, and vertical walls equidistant from the crack. The energy flux density J in 
the uniformly compressed elastic plate at its flexural oscillations with amplitude ~ was taken into account [4] 
according to the formula 

J = Pg di \ ox 3 0 t  Ox 2 0xc3t ) - qi-~z - ~  " 

3. Quantitative estimation of the dependence of distributions of the reflection R and transmission 
T amplitude coefficients related to the incident wave amplitude over the oscillation period ~" on the plate 
characteristics and on the basin depth was carried out for an ice plate with p = 1025 kg /m 3, pl,2 ----  870 kg/m 3, 
vl,2 = 0.3, hi ~< h2. The ice thickness was h i = 0-2 m, its elasticity coefficient E i = 3. 107-3 �9 109 N/m 2, the 

quantity q1 = 0-1"3V/~ m2 (characterizing the ice compression degree), and the basing depth H = 10-50 m. 
Waves with periods r up to 20 sec were considered. 
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The quantities R and T were specified through velocity potentials (1.7), (1.8) from the continuity 
condition for oscillations on the basin surface which implies that the vertical component of the liquid velocity 
is equal to that  of the ice plate on each side of the crack. Some of the results that  clearly show the possible 
manifestations of distinctive features of the wave regime are presented at Figs. 1-6. Analysis of the calculation 
results shows that  neglecting the damped near-edge modes, which rules out the possibility of matching the 
potentials ~1, ~2 and the horizontal velocity components O~l/OX and 0~22/0x throughout the liquid depth 
under the crack (x = 0), does not reflect to the full extent the physical essence of the studied phenomenon. 
This can be seen most clearly for small (r < 5 sec) and intermediate (5 sec < r <15 sec) periods. 

For small periods there exists a significant underestimation of R and overestimation of T which may 
reach an order of 50%. This is evident from a comparison of plots in Fig. 1 for H = 25 m, hi = h2 = 1 m, 
ql = q2 = 0, and E = 3- 109 N / m  3 (solid lines correspond to matching throughout the depth, while dashed 
lines are for matching at the basin surface). For intermediate periods, differences in the matching conditions 
for potentials and horizontal velocities at x = 0, scarcely affecting the coefficient T, may lead to either a 
decreased (for shallow water) or increased (for deep water) value of R. 

The  dependences of R and T distributions over the oscillation period on the basin depth, ice thickness, 
its stiffness, and ice compression degree are plotted for h = 2 m (Figs. 2, 4), q = 0 (Figs. 2-4), H = 50 m 
(Fig. 3), H = 25 m (Fig. 4, 5), h = 1 m (Fig. 5). They are obtained for the same ice conditions on each 
side of the crack with elasticity coefficient E = 3.109 N / m  3 (except Fig. 4). Dotted, dashed, and solid lines 
correspond to depths of 10, 25, 50 m (Fig. 2); ice thicknesses of 0.5, 1, 2 m (Fig. 3); E = 3 .107 ,  3 .  l0 s, 
3 109 N/ra  3 (Fig. 4); 'and qj = 0, ~/'~, 1.3~r~ (Fig. 5). 

Calculation results show that  at a fixed ice thickness a period r.  exists such that  R = T = l /v/2.  It 
is essentially independent of the basin depth and is determined only by the plate parameters. The value r.  
grows with an increase in the ice elasticity and thickness, as can be seen from a comparison of the plots in 
Figs. 2-4. In addition, under certain conditions there may exist a period r0 of the full transmission of waves 
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with an intermediate wavelength through the crack in the ice cover; the value r0 shifts to smaller periods with 
the increased basin depth. At TO < r < Oo, the function T( r )  has a minimum whose value is close to unity. 
The period of the full transmission diminishes with decreased cylindrical ice stiffness. 

The amplitude transmission T (reflection R) coefficient decreases (increases) at periods r < r, ,  and 
increases (decreases) at r > r,  as the depth H increases. Increased ice thickness leads to decreased T and 
increased R. An increase in the ice compression degree in the interval considered makes the transmission 
(reflection) coefficient stronger (weaker) at T < TO. If r > T0, the directionality of the influence of compression 
on R and T is changed, being pronounced within a finite interval of periods (Fig. 5). Also, under compression 
the full reflection may take place at two different periods. 

With the ice thickness decreased in a region from which a progressive wave surges toward the crack, 
the perturbation picture approaches the picture formed in the case of a wave surging toward the crack from 
open water [3]. The plots in Fig. 6 at h2 = 1 m, ql = q2 = 0, E = 3 �9 109 N/m 3 and H = 25 m illustrate the 
dependence of the transmission and reflection coefficients on variations of hi (solid, dashed, and dotted lines 
correspond to hi = 0.1, 0.6, and 0.9 m). 
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